
Elastic

@dmitterd

Seven Deadly Sins of
Elasticsearch Benchmarking

Daniel Mitterdorfer

2

• Run a well-defined workload

• Measure performance metrics

• Change a parameter

• Compare results

What is Benchmarking?

3

Characteristics

Sin One

Ignore System Setup

5

• Same hardware: CPU, memory, disk, network

• Same software: kernel / system libraries, JVM and Elasticsearch version

• Same configuration: file system, I/O scheduler, network configuration

Relevancy

6

Be close to production

• Stable environment: Don’t change kernel / system libraries, JVM and Elasticsearch version

• Turn off system daemons (e.g. updates)

• Load generator is on a separate machine

• Low-latency, high-throughput network between all machines

• No other traffic on that network

Reduce Noise

7

Better reproducible numbers

Reduce Noise

8

Weekly variation in throughput?

Reduce Noise

9

TRIM your SSD drive TRIM enabled in
benchmark setup

Sin Two

Cold Start

11

Are you awake
before your first coffee?

Warmup Effects

12

JIT Compilation

workload
changes

• CPU L1 - L3 cache (incl. prefetching unit)

• Disk-internal cache (absorb I/O spikes)

• OS page cache (buffers writes to disk)

• Application caches: shard request cache, node query cache

Caches Everywhere

13

Consider in Warmup and Workload Definition

Warmup Effects

14

Indexing Throughput

Sin Three

Hit it as hard as possible

16

Waiting Time

17

Service Time

18

Latency =
Waiting Time +
Service Time

19

Utilisation
At 0%: no waiting time

20

Utilisation
At 100%: high waiting time

21

Throughput and
Utilisation

Created based on http://robharrop.github.io/maths/performance/2016/02/20/service-latency-and-utilisation.html

Latency...

22

… but at which throughput?

• Important metrics: Throughput

• Run at maximum throughput

• Watch error rate (bulk rejections, request timeouts) and reduce load if necessary

Tips

23

Batch Operations (e.g. bulk indexing)

• Important metrics: Latency

• Run at a defined throughput (use production metrics for guidance)

• Latency >> service time is a clear sign of saturation

Tips

24

Interactive Operations (e.g. searches)

Measuring Latency

25

Modelling Arrivals: Deterministic schedule at 1 query/s

• Simple to understand

• Unrealistic for many scenarios (would require coordination between users)

• Tends to produce latency spikes with many clients (requests pile up)

Measuring Latency

26

Modelling Arrivals: Poisson schedule at 1 query/s

• Probabilistic: not intuitive at first

• Often more realistic (models independent users)

Measuring Latency

27

Deterministic (blue) vs. Poisson (red) with 300 concurrent clients

Sin Four

The Divine Benchmarking Script

Newsflash: Benchmarking software has bugs

• Response status code checks (the fast 404)?

• Maximum throughput of your load generator?

29

“It must be correct. After all, it produces numbers with 6 decimal places!”

30

es = Elasticsearch(target_hosts)
while True:
 sendBulk(es)

Example 1: Inappropriate Timeout
Overwhelming Elasticsearch

31

increase default request timeout
es = Elasticsearch(target_hosts, timeout=60)
while True:
 sendBulk(es)

Example 1: Inappropriate Timeout
Overwhelming Elasticsearch

Example 2: Contention in Elasticsearch?

32

More clients, less load?

Client Count Median Throughput [docs/s]
1 100.000
2 87.500
4 80.000
8 70.000

Example 2: Contention in the Load Generator!

33

More clients, less load?

34

while read -r query
do
 curl --data "${query}" "http://es:9200/cars/_search" &
done < popular_car_queries.txt

Example 3: Let’s query

Be critical

• Don’t trust any random script

• Stress-test your load generator

• Cross-check behavior on network level (Wireshark)

• Test error scenarios (e.g. 404s)

35

Check, check and then check again

Sin Five

Unnoticed accidental bottlenecks

Are you stressing the right component?

37

Check every subcomponent

Load
Generator

Elasticsearch

Master Nodes (3)

Ingest Nodes (X)

Data Nodes - Hot (X)

Data Nodes - Warm (X)

Are you stressing the right component?

38

More nodes: No throughput gains?

Elasticsearch Node Count Median Throughput [docs/s]
1 1.300
2 2.600
3 2.600

39

 Time ens3
HH:MM:SS KB/s in KB/s out
10:07:12 0.11 0.21
10:07:13 34.71 45218.57
10:07:14 224.08 91764.32
10:07:15 821.85 127922.0
10:07:16 1612.70 127817.9

Example: Check network bandwidth with ifstat

Are you stressing the right component?

40

 Time ens3
HH:MM:SS KB/s in KB/s out
12:16:32 0.13 0.32
12:16:33 45.81 47114.57
12:16:34 354.18 96889.94
12:16:35 751.95 193469.0 # 1 Gbit link would be saturated
12:16:36 1722.80 271688.9

Retry with a 10 Gbit card

Are you stressing the right component?

Are you stressing the right component?

41

Check every subcomponent

Load
Generator Switch

Elasticsearch

Master Nodes (3)

Ingest Nodes (X)

Data Nodes - Hot (X)

Data Nodes - Warm (X)

• Example approach: USE method by Brendan Gregg (http://www.brendangregg.com/usemethod.html)

• Utilization

• Saturation

• Errors

Are you stressing the right component?

42

Check methodically

http://www.brendangregg.com/usemethod.html

Sin Six

Chaos

A recipe for disaster

{ }
I’ll update Elasticsearch …
… and the Java version.

45

One Step at a Time

Benchmark Experiment Execution

46

Reset environment to
known stable state

1 2 3

Change one variable Run experiment
(one or more

iterations)

{ }

What did I do to get these results?

48

Document
Everything

49

{
 "environment": "nightly",
 "trial-timestamp": "20180201T210054Z",
 "@timestamp": 1517544210265,
 "name": "cpu_utilization_1s",
 "value": 799.4,
 "unit": "%",
 "sample-type": "normal",
 "track": "nyc_taxis",
 "car": "4gheap",
 "meta": {
 "distribution_version": "7.0.0-alpha1",
 "source_revision": "df1c696",
 "node_name": "rally-node-0",
 "host_name": "192.168.14.3",
 "cpu_model": "Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz",
 "os_name": "Linux",
 "os_version": "4.10.0-42-generic",
 "jvm_vendor": "Oracle Corporation",
 "jvm_version": "1.8.0_131"
 }
}

Example metrics record

Sin Seven

Denying Statistics

Our Benchmark Results

51

Are we done yet?

Example: Indexing Throughput Distribution

52

Lots of trial runs in identical conditions

• Control every variable that you can (see “reducing noise”)

• Run-to-run variation is a fact: lots of moving parts

• Multiple trial runs (> 30) and statistical significance tests (e.g. t-test)

Mitigating run-to-run variation

53

Statistical Significance Tests

• Median, mean, mode: So many possibilities to choose! Median is robust against outliers

• Report also at least minimum and maximum so readers get a feeling of the degree of variance

Summarizing Results

54

General Tips

• The meaningless mean: Half of the samples are worse than the mean. Use percentiles.

• False accuracy: Cannot calculate a 99.99th percentile from 10 samples

• Don’t assume normal distribution: latency is usually multi-modal (fast path / slow path)

Summarizing Results

55

Latency

Summary & Outlook

1. Benchmarks run in production-like environment

2. Warmup is considered

3. Workload modelled correctly

4. Load test driver checked

5. No accidental bottlenecks

6. Structured benchmarking process

7. Results are checked for statistical significance

Ben is happy

57

• Macrobenchmarking tool Rally: https://github.com/elastic/rally

• Rally implements many best practices that we covered in this talk

• Everything is open source: Tooling and data

• Everything is public: system configuration and detailed results

How do we benchmark at Elastic?

58

https://github.com/elastic/rally

Japanese Proverb

{ }

Fall Seven Times, Stand Up Eight.

60

Questions?

AMA Booth
or
Birds of a Feather
(starting 3:30 pm)

www.elastic.co

• Sin 1: On issuing TRIM: https://www.elastic.co/blog/is-your-elasticsearch-trimmed

• Sin 3: “Relating Service Utilization to Latency” by Rob Harrop:

http://robharrop.github.io/maths/performance/2016/02/20/service-latency-and-utilisation.html

• Sin 3: “The Queueing Knee” by Baron Schwartz: https://www.xaprb.com/blog/queueing-knee-tangent/

• Sin 5: USE Method by Brendan Gregg: http://www.brendangregg.com/usemethod.html

• Sin 7: How not to measure latency by Gil Tene: https://www.youtube.com/watch?v=lJ8ydIuPFeU

Reference Material

62

Further Reading

https://www.elastic.co/blog/is-your-elasticsearch-trimmed
http://robharrop.github.io/maths/performance/2016/02/20/service-latency-and-utilisation.html
https://www.xaprb.com/blog/queueing-knee-tangent/
http://www.brendangregg.com/usemethod.html
https://www.youtube.com/watch?v=lJ8ydIuPFeU

• Upgrade by gato-gato-gato (license: CC BY-NC-ND 2.0)

• Oregon Dunes National Recreation Area by Theo Crazzolara (license: CC BY 2.0)

• Paperwork by Erich Ferdinand (license: CC BY 2.0)

• Coffee by Fil.Al (license: CC BY 2.0)

• I miss coffee by Daniel Go (license: CC BY-NC 2.0)

Reference Material

63

Image Credits 1/2

https://www.flickr.com/photos/gato-gato-gato/3149979415/
https://www.flickr.com/photos/gato-gato-gato
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/theocrazzolara/32882955525/
https://www.flickr.com/photos/theocrazzolara/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/erix/15151598439/
https://www.flickr.com/photos/erix/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/fbohac/7576069660/
https://www.flickr.com/photos/fbohac/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/danielygo/11198070073/
https://www.flickr.com/photos/danielygo/
https://creativecommons.org/licenses/by-nc/2.0/

• It's about the coffee by Neil Moralee (license: CC BY-NC-ND 2.0)

• On an adventure by Dirk Dallas (license: CC BY-NC 2.0)

• Traffic Jam by lorenz.markus97 (license: CC BY 2.0)

• Swirl me back home by Nick Fisher (license: CC BY-ND 2.0)

Reference Material

64

Image Credits 2/2

https://www.flickr.com/photos/neilmoralee/8179963297/
https://www.flickr.com/photos/neilmoralee/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/dirkdallas/14988429720/
https://www.flickr.com/photos/dirkdallas/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/lorenz_markus/17449315008/
https://www.flickr.com/photos/lorenz_markus/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/cobrasick/5297980956/
https://www.flickr.com/photos/cobrasick/
https://creativecommons.org/licenses/by-nd/2.0/

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nd/4.0/

Creative Commons and the double C in a circle are
registered trademarks of Creative Commons in the United States and other countries.

Third party marks and brands are the property of their respective holders.

65

Please attribute Elastic with a link to elastic.co

